package.common.modelCV module
- class package.common.modelCV.BaseModelCV(n_splits: int = 3, n_repeats: int = 1, metric_func: Optional[Callable] = None, direction: Literal['minimize', 'maximize'] = 'maximize')
ベースクラス:
ABC- abstract define_search_space(trial)
- fit(X: DataFrame, Y: Series, n_trials: int = 150)
- abstract property model_class
- class package.common.modelCV.LGBCV(n_splits: int = 3, n_repeats: int = 1, metric_func: Optional[Callable] = None, direction: Literal['minimize', 'maximize'] = 'maximize')
ベースクラス:
BaseModelCV- define_search_space(trial)
- property model_class
- class package.common.modelCV.LGBRCV(n_splits: int = 3, n_repeats: int = 1, metric_func: Optional[Callable] = None, direction: Literal['minimize', 'maximize'] = 'maximize')
ベースクラス:
BaseModelCV- define_search_space(trial)
- property model_class
- class package.common.modelCV.RidgeCV(n_splits: int = 3, n_repeats: int = 1, metric_func: Optional[Callable] = None, direction: Literal['minimize', 'maximize'] = 'maximize')
ベースクラス:
BaseModelCV- define_search_space(trial)
- property model_class
- class package.common.modelCV.SVCCV(n_splits: int = 3, n_repeats: int = 1, metric_func: Optional[Callable] = None, direction: Literal['minimize', 'maximize'] = 'maximize')
ベースクラス:
BaseModelCV- define_search_space(trial)
- property model_class
- class package.common.modelCV.SVRCV(n_splits: int = 3, n_repeats: int = 1, metric_func: Optional[Callable] = None, direction: Literal['minimize', 'maximize'] = 'maximize')
ベースクラス:
BaseModelCV- define_search_space(trial)
- property model_class